

Automotive filters

Automotive filters are designed to protect relevant mechanical and electronic components parts in the automotive sector. Sefar offers highly precise woven screens in monofilaments for applications such as security filters for valves, pumps and sensors. We can also supply depth filters where high dust holding capacity is needed.

Product Features

Injection Filter

Water Filter

In-tank Filter

AdBlue Filter

Gear Filter

DOWNLOADS

Brochure: Automotive (PDF 3464 kb)

Customer Info: SEFAR PEEKTEX Automotive (PDF 763 kb)

Flyer: SEFAR PowerHeat NT (PDF 231 kb)

Flyer: SEFAR VISION AM (PDF 992 kb)

Diesel Filter

Injection filters

For fuel, CNG and AdBlue / SCR filters

- Highly precise and secure filter
 screens in a wide range of pore sizes
- Excellent thermal and chemical resistance
- Best possible flow rate
- Customer-specific colors
- Best processability
- SEFAR NITEX (PA), SEFAR

 PEEKTEX (PEEK) screens

Filters for hydraulic systems

For hydraulic brake filters, transmission filters, power steering filters and hydraulic cartridge systems:

- Highly precise and secure filter
 screens in a wide range of pore sizes
- Excellent thermal and chemical resistance
- Best possible flow rate
- SEFAR NITEX (PA), SEFAR PETEX(PET) and SEFAR PEEKTEX

- (PEEK) screens
- Customer-specific colors in PA and

PET

Best processability

Filters for the water system

We provide products for windshield wipers and water reservoirs:

- Highly precise and secure filter
 screens in a wide range of pore size
- Excellent thermal and chemical resistance
- Best possible flow rate
- SEFAR NITEX (PA), SEFARPROPYLTEX (PP) screens
- Customer-specific colors in PA
- Best processability

In-tank fuel pump filter and in-tank diesel filter

- High mechanical and chemical stability
- High capacity on defined particle size
- Best processability
- SEFAR ACCUFLOW, SEFAR TETEX

MONO, SEFAR NITEX

AdBlue / SCR / DEF- Filters and sensor filters

Products to protect the AdBlue pump module, injection system and sensors in diesel exhaust conditioning.

- High mechanical and chemical stability
- High capacity on defined particle size
- Best processability
- SEFAR ACCUFLOW, SEFAR TETEX

MONO, SEFAR NITEX

Transmission, gear oil filtration

Suction and pressure filters manufactured using our open mesh fabrics combined with a wide range of depth media provide the ultimate filtration protection.

- Customer-specific solutions
- Combination of non-woven and woven fabric
- Open mesh for pleated elements
- Open mesh for last chance filtration

Diesel water separation

SEFAR ACCUFLOW is the top choice for coalescing, while an open mesh filter with a special hydrophobic treatment is best for water separation.

- SEFAR ACCUFLOW depth media for coalescing
- SEFAR PETEX (PET), SEFAR
 NITEX (PA) hydrophobic range for
 water separation
- In-house media testing (based on ISO 16332)

IATF 16949 Automotive

Sefar's manufacturing system is geared towards providing lot-to-lot repeatability for critical parameters. This consistent quality allows automotive injection molders and filter element manufacturers to easily incorporate Sefar products into their manufacturing processes.

Your Benefits

Inherent material properties

- Good replacement for metal filters (thermal and chemical resistance)
- Easily molded (handling properties of synthetic fiber vs. wire)
- Consistent quality (IATF 16949)
- Useable in extreme temperature ranges and chemically aggressive environments
 (PEEK fabrics)
- Variety of conversion configurations

Open mesh fabrics

- Exact and repeatable screening properties (high precision mesh opening)
- High flow rates (low pressure drop, maximized open area by use of fiber down to 24µm)

■ C	Depth filter material for high capacity (60 µm material) applications Depth filter material for high efficiency (30 µm material) applications Proven test results for flat or converted materials (external approved test labs) Evailable as roll goods or ribbons for injection molders
■ C	Pepth filter material for high efficiency (30 µm material) applications Proven test results for flat or converted materials (external approved test labs)
■ C	Pepth filter material for high efficiency (30 µm material) applications Proven test results for flat or converted materials (external approved test labs)
	Depth filter material for high efficiency (30 μm material) applications
	Pepth filter material for high capacity (60 um material) applications
	(.a.tot. a.a.tot. a.a
	Excellent bonding uniformity (latest ultrasonic bonding technology)
	Jseable with all fuels and most liquids (elevated temperature fuel tests)
	Protects pump systems (high particle retention capacity)
■ L	ower power consumption and minimal space requirement (low pressure drop)
Dep	th filter material
C	Cleanliness (smooth surface)
	Optimized flow rates
H	lighly efficient particle retention (closed mesh)
Clos	sed mesh fabrics
■ N	Maximum technical range (materials, diameters and weaving patterns)
(5	surface modification)
A	adjustable hydrophobic levels, ranging from 100 to 135 degree contact angle

Sefar BDH Inc.

200 rue Clement Gilbert Saguenay QC, G7H 5B1 – Canada

Phone: +1 418 690 0888 Fax: +1 418 690 9499

E-Mail

Sefar Inc.

Kansas City, MO – USA Phone: 800 995 0531 Fax: +1 816 452 2183

E-Mail

Sefar Inc.

Los Angeles, CA – USA Phone: 800 995 0531 Fax: +1 909 544 5901

E-Mail

Sefar Inc.

Gray, GA – USA Phone: 800 995 0531 Fax: +1 478 986 6953

E-Mail

Sefar Inc.

111 Calumet Street Buffalo, NY 14043 – USA Phone: 800 995 0531

Fax:

E-Mail